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Abstract. In supersymmetric grand unified theories, light higgsino multiplets generally exist in addition
to the familiar chargino/neutralino multiplets of the minimal supersymmetric extension of the Standard
Model. The new multiplets may include doubly charged states ∆̃±± and δ̃±±. We study the properties
and the production channels of these novel higgsinos in e+e− and γγ collisions, and investigate how their
properties can be analyzed experimentally.

1 Synopsis

While the Standard Model (SM) has been extremely suc-
cessful in interpreting nearly all experimental observations
in the past three decades, there is increasing experimen-
tal evidence that the model should be embedded in a
more comprehensive theory. The deficit of solar and atmo-
spheric neutrino fluxes and indications for the existence of
hot and cold components of dark matter point clearly to
directions of physics beyond the Standard Model [1].

Strongly motivated by the observations of non–zero
neutrino masses, the embedding of the SM in a left–right
(LR) symmetric grand unified theory (GUT) like SO(10)
[2,3] or E6 [4] is a most attractive direction. In this ap-
proach, the chiral fermion fields of one generation are
grouped together in a single multiplet of the fundamental
representation, including the right–handed neutrino com-
ponent.

The hierarchy problem, related to light fundamental
scalars in the context of very high GUT scales, is partly
solved, in a natural way, by extending the model to a
supersymmetric (SUSY) theory. The non–trivial vacuum
structure and the breaking of supersymmetry leads to in-
teresting new phenomena. In SUSY GUT-s with inter-
mediate left–right symmetry, novel light superfields can
be present despite the very high scale of the left–right
symmetry breaking [5–7]. The resulting low–energy the-
ory is the R–parity conserving minimal supersymmetric
standard model (MSSM), supplemented by light massive
neutrinos which can be generated by the see–saw mecha-
nism [8], and light remnants of the Higgs supermultiplets.
If the scale for left–right symmetry breaking is chosen such
as to generate the right order of neutrino masses, the new
light states should have masses in the range of ∼ 100 GeV.

In this study we focus on one of the central predictions
of this type of SUSY models in the light fermionic hig-
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gsino sector: light doubly charged SU(2)L ×U(1)Y triplet
components ∆̃++ and singlets δ̃++. We construct the ef-
fective low–energy model incorporating these new fields
and define their interactions. The influence of the new
particles on the unification of couplings is studied in the
context of SUSY SO(10). Subsequently we work out the
phenomenology of these particles at future e+e− linear
colliders, extending earlier work in [9,10]:

e+e− → ∆̃++∆̃−− (1)

e+e− → δ̃++δ̃−− (2)

We will discuss the production of the doubly charged hig-
gsinos and their decay modes1. Final–state correlations
among the decay products, rooted in spin–spin correla-
tions, can be exploited to measure the fundamental cou-
plings of these particles [12]. γγ collisions which are par-
ticularly suited for the production of doubly charged par-
ticles will also be briefly commented on.

The outline of the paper is as follows. After describ-
ing the general physics base in Sect. 2, the production of
higgsinos will be presented in Sect. 3, followed by a dis-
cussion of the decay modes in the subsequent section. In
Sect. 5, angular correlations will be exploited to determine
the higgsino couplings.

2 Effective low–energy theory

Grand unified theories which incorporate left–right sym-
metries, include the groups SO(10) and E6. If broken
down to the Standard Model gauge group SU(2)L×U(1)Y ,
effective theories based on intermediate SU(2)L ×SU(2)R

×U(1)B−L or other symmetries may be realized at a scale
MR. Embedding such models in supersymmetric theories

1 The phenomenology of the doubly charged Higgs bosons
has previously been studied extensively in [11].
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can solve many of the problems of the MSSM: strong
and weak CP problems; the conservation of R parity [13].
These theories can also accommodate small neutrino
masses through the see–saw mechanism in a natural way.

Several theoretical possibilities exist in SUSY LR mod-
els [14] which lead, after symmetry breaking, to vacua
conserving the electric charge. (i) Either the LR breaking
scale must be low, MR <∼ MSUSY , and R–parity must be
spontaneously broken at the same time [15]; or (ii) B −L
neutral triplets must be added; or (iii) non–renormalizable
interactions must be introduced [5,6]. The phenomenom-
ena emerging from (i) have been studied in [16]. The sce-
nario (ii) may lead to new light singly charged higgsinos.
In this paper, we concentrate specifically on phenomena
following from the third solution which involves doubly
charged spin–1/2 particles.

This solution implies that the right–handed symmetry
breaking scale is very high, MR >∼ O(1010 − 1011 GeV).
At such a scale effective higher-order operators originat-
ing from Planck scale physics may start playing a role.
Since the scale MR sets the natural mass scale of the new
particles, one may näıvely guess that all the new parti-
cles decouple from the low–mass spectrum. However, as
a result of the vacuum structure, the decoupling is not
complete in supersymmetric theories. (This was already
noticed quite early in [17]). If the supersymmetry is un-
broken, the symmetry leads to an ensemble of degenerate
vacua corresponding to flat directions. The excitations as-
sociated with these flat directions are massless particles.
If SUSY is broken, the D–flat directions are lifted and the
theory picks one of the vacua; if R–parity is conserved and
MR is sufficiently high [18], the vacuum conserves the elec-
tric charge [5,6]. The previously massless excitations are
transformed to states with masses of orderm ∼ M2

R/MPL,
with MPL being the Planck scale. Besides the light neutri-
nos, the effective low–energy theory will include these light
remnants in addition to the MSSM particle spectrum.

In this scenario the effective low–energy theory is de-
fined by the MSSM with exact R–parity, supplemented
by two left–handed triplet superfields ∆ and ∆̄, and two
right-handed singlet superfields δ and δ̄ with opposite U(1)
quantum numbers such as to cancel chiral anomalies. They
are assigned the SU(2)L × U(1)Y quantum numbers

∆ =

(
∆+/

√
2 ∆++

∆0 −∆+/
√

2

)
= (3, 2)

∆̄ =

(
∆̄−/

√
2 ∆̄0

∆̄−− −∆̄−/
√

2

)
= (3,−2) (3)

and

δ = δ−− = (1,−4) δ̄ = δ̄++ = (1, 4) (4)

These fields are the light remnants of the Higgs supermul-
tiplets in the underlying GUT theory belonging to (3,1)
and (1,3) representation2 of the intermediate SU(2)L ×

2 For the SU(3)c×SU(2)L×SU(2)R×U(1)B−L intermediate
theory, the complete set of quantum numbers read (1, 3, 1, ±2)
for ∆/∆̄ and (1, 1, 3, ∓2) for δ/δ̄, respectively.

SU(2)R subgroup, respectively. The superpotential, apart
from the non-renormalizable terms, may be written as

W = WMSSM +WT +WS (5)

where WMSSM is the superpotential of the MSSM [19]
and the new terms WT and WS describing the triplet and
singlet superfield interactions, respectively, are given by

WT = M∆Tr∆∆̄+ if∆L
T τ2∆L ,

WS = Mδδ
−−δ̄++ + fδl

clcδ−− (6)

The doublet of left-handed leptons is denoted by L and
the singlet of the right-handed lepton by lc (fδ = f∆

for strict LR symmetry at the relevant scale). Because
of stringent constraints on lepton–flavor violation from
the processes l1 → l2γ, l1 → 3l2 and µ − e conversion
in nuclei, the couplings f are diagonal to a high degree
of accuracy in family space [20]. The experimental bound
from muonium-antimuonium conversion implies the con-
straint feefµµ <∼ 1.2 · 10−3 for the mass M∆ = 100 GeV
while no constraints can be set on the coupling fττ . This
implies that light doubly charged particles with masses
around 100 GeV cannot decay to electrons and muons at
the same time.

Including new light supermultiplets (3,4) in the low–
energy particle spectrum will influence the running of cou-
plings and may dangerously spoil the unification of α1 =
3/5αY , α2 and α3 = αs at the GUT scale [21], eventu-
ally jeopardizing the unification of the couplings, or worse,
driving the unification point to a dangerously low scale for
proton decay. The evolution of couplings to one–loop or-
der is described by the solutions of the renormalization
group equations,

1
αi(MX)

=
1

αi(µ)
+
bi
2π

ln
(

µ

MX

)
(7)

where the beta functions bi depend on the particle content
of the theory.

We shall exemplify a possible symmetry breaking path
by assuming SO(10) as grand unification group broken
down to the SM symmetry in the Pati–Salam chain3:

SO(10) −→MU SU(4) × SU(2)R × SU(2)L

−→MR SU(3)c × SU(2)L × U(1)Y

−→MW SU(3)c × U(1)em (8)

At the scale MR the couplings must satisfy the boundary
conditions for Pati-Salam partial unification:

α−1
3 (MR) = α−1

4 (MR)

α−1
2 (MR) ≡ α−1

2L (MR) = α−1
2R(MR)

α−1
1 (MR) =

3
5
α−1

2 (MR) +
2
5
α−1

3 (MR) (9)

3 The evolution of couplings following such a chain, without
additional light SUSY particles however, has been studied in
[22].
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SO(10) → SU(4)xSU(2)LxSU(2)R → SU(2)LxU(1)Y

1/
α

Log MX[GeV]

Fig. 1. Running of the coupling constants assuming the inter-
mediate Pati-Salam partial unification

While the first two conditions are self–evident, the third
condition follows from the breaking mechanism R× (B −
L) → Y. The partial unification scale is fixed by the third
condition. The low energy particle spectrum at scales MX

below MR has already been specified in (5). The corre-
sponding SUSY beta functions bi are given by

b1 = 2NF +
3
10
ND +

9
5
N∆ +

12
5
Nδ

b2L = −6 + 2NF +
1
2
ND + 2N∆

b3 = −6 + 2NF (10)

where NF = 3 is the number of families, and ND, N∆

and Nδ are the numbers of doublet, triplet and singlet
Higgs superfields, respectively; in the present example,
ND = N∆ = Nδ = 2. The additional light Higgs super-
fields increase the slopes of α−1

1 and α−1
2 , and they ac-

celerate the running of the two couplings. Above MR, the
minimal SU(2)L,R superfield content is naturally assumed
to consist of two doublets, and of two left–handed and two
right–handed triplets [∆/∆̄ and δ/δ̄, respectively]. This
spectrum implies for the beta functions b2L,R

b2L = b2R = −6 + 2NF +
1
2
ND + 2N∆,δ (11)

α−1
2L = α−1

2 therefore evolves with MX without any break
across the scale MR, cf. Fig. 1. Since the coupling α−1

3
becomes larger than α−1

2 near MR, the asymptotically
free color SU(3)c sector must transmute into an asymp-
totically non–free Pati–Salam SU(4) sector at MR in or-
der to evolve into a grand unification crossing point with
SU(2)L × SU(2)R at a large scale MU >∼ 1016 GeV. This
can be achieved by introducing N10 ten-plet superfields,
giving rise to the beta function

b4 = −12 + 2Ng + 3N10 (12)

Four such ten–plets are needed at least, in the present
example, to reach a unification point below the Planck
scale; with N10 = 4 the SO(10) unification point MU is
located at a scale MU ∼ 1016 GeV while the LR symmetry
breaking scale is MR ∼ 1010 GeV, given the standard low
energy couplings at MZ .

Even though this specific example may look somewhat
baroque, as a result of the little motivated ten–plet spec-
trum, it demonstrates nevertheless that light Higgs super-
fields can be accommodated in grand–unification SO(10)
scenarios indeed.

The two–component mass terms for the doubly charged
higgsinos are derived from the superpotential (6),

Lmass = −M∆̃∆̃
++
L

˜̄∆
−−
L −Mδ̃ δ̃

−−
R

˜̄δ
++

R + h.c. (13)

where the tilde denotes the fermionic component of the
corresponding superfield in (3). It follows from the above
Lagrangean that the fermionic components of the two
triplet (and singlet) superfields combine to form one four–

component fermion Dirac field; ∆̃++
L and ( ˜̄∆

−−
L )c = ˜̄∆

++
R

can be identified as left– and right–chiral components of
one Dirac field ∆̃++ [δ̃ correspondingly]. Therefore the
left- and right-chirality components of the four–component
fermions ∆̃++

L,R and δ̃++
L,R carry the same SU(2)L iso–quantum

numbers and they couple not only to the photon but also
to the Z-boson in exactly the same way.

The gauge interactions of the new higgsinos are de-
scribed by the usual Lagrangean

L = ∆̃++
L i6D∆̃++

L + ∆̃++
R i6D∆̃++

R + δ̃++
L i6Dδ̃++

L

+δ̃++
R i6Dδ̃++

R (14)

where the covariant derivative is given by iDµ = i∂µ +
eQγAµ +gZQZZµ with gZ = e/(sW cW ). Qγ is the electric
charge related to isospin I3 and hypercharge Y by the
Gell–Mann–Nishijama relation Qγ = I3 + Y/2 while the
Z–charge follows from QZ = I3 − s2WQγ with s2W = 1 −
c2W = sin2 θW being the weak mixing angle. Both left– and
right–chiral components of ∆̃++ and δ̃++ carry the same
isospin I3 = +1 and I3 = 0, respectively. The electroweak
gauge theory of these fields is of vector–like character.

The relevant Yukawa interactions for the doubly
charged higgsinos are given by the four–component La-
grangean

LY = −2f∆ l̄
c
L∆̃

++
L l̃L − 2fδ l̄

c
Rδ̃

++
R l̃R + h.c. (15)

where the subscripts L,R denote the chirality of the ferm-
ions and the type of the sleptons at the same time.

It is instructive to analyze also the chargino and neu-
tralino sectors of the model in toto. Due to the two new
triplets, three charginos are generated,

ψ+ =
(
−iω̃+, h̃+

2 , ∆̃
+
)

(16)

ψ− =
(
−iω̃−, h̃−

1 ,
˜̄∆

−)
(17)
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and six two component neutralinos,

ψ0 =
(

−ib̃0,−iω̃0
3 , h̃

0
1, h̃

0
2, ∆̃

0, ˜̄∆
0
)

(18)

However, the new states do not mix with the MSSM states.
Because there is no doublet-triplet mixing in the superpo-
tential, the doublet higgsinos do not mix with the triplet
higgsinos. Triplets can, in principle, mix with gauginos
due to the gauge-matter interactions

Lint = iga

√
2T a

ijφ
∗
i ω̃

aψj + h.c. (19)

where T a are the gauge group generators. However, the
gaugino-triplet higgsino mixing terms are proportional to
the vacuum expectation value vL of the neutral left-hand-
ed triplet Higgs field ∆0 which is strongly constrained
from the measurement of the ρ parameter to be below
1 GeV. Therefore these mixing terms are negligible and
the triplet higgsino decouples from the MSSM states. The
only mass term for the triplet neutralino generated by the
superpotential (6) is of the type ∆0∆̄0 which implies that
the components form one neutral Dirac fermion while the
MSSM neutralinos are in general Majorana states. As a re-
sult, the interactions of the triplet higgsinos are limited to
the Yukawa interactions of the type (15) and to the gauge
interactions. They do not mix with the MSSM states and
the properties of the genuine charginos and neutralinos in
the MSSM are not modified.

3 Production of doubly charged higgsinos

The matrix elements of the processes (1) and (2) can, quite
generally, be expressed in terms of four bilinear charges
[23,12], classified according to the chiralities α, β = L,R
of the associated lepton and higgsino currents,

T
(
e+e− → ∆̃++∆̃−−

)
(20)

=
e2

s
Qαβ

[
v̄(e+)γµPαu(e−)

] [
ū(∆̃++)γµPβv(∆̃−−)

]

and analogously for the process e+e− → δ̃++δ̃−−. In this
notation ∆̃++, δ̃++ are defined as particles and ∆̃−−, δ̃−−
as antiparticles.

The process e+e− → ∆̃++∆̃−− is built up by s–chan-
nel γ and Z exchanges, and t–channel ẽL exchange. The
corresponding Feynman diagrams are depicted in Fig. 2.
After the appropriate Fierz transformation, also the t–
channel amplitude can be cast in the current × current
form (20). The charges for the process (1) are given by

e+e− → ∆̃++∆̃−− : QLL = 1 + 2 cot2 2θWDZ

+2(f2
∆/e

2)DẽL

QLR = 1 + 2 cot2 2θWDZ (21)
QRR = QRL = 1

−(cos 2θW / cos2 θW )DZ

The first index in Qαβ refers to the chirality of the e±

current, the second index to the chirality of the ∆̃±±
current. In the process (1) the ẽL exchange affects only
the LL chirality charge while all other amplitudes are
built up by γ and Z exchanges. Dẽ denotes the slepton
propagator Dẽ = s/(t − m2

ẽ), and DZ the Z propagator
DZ = s/(s − m2

Z + imZΓZ); the non–zero Z width can
in general be neglected for the energies considered in the
present analysis so that the charges are real.

In contrast to (1), the process (2) describes the pro-
duction of a right-handed singlet. The δ̃++ coupling to
the Z boson is modified according to (14) and the t–
channel exchange graph in Fig. 2 involves the right–chiral
selectron ẽR. The corresponding charges for the process
e+e− → δ̃++δ̃−− are given by

e+e− → δ̃++δ̃−− : QLL = QLR

= 1 − (cos 2θW / cos2 θW )DZ

QRL = 1 + 2 tan2 θWDZ

QRR = 1 + 2 tan2 θWDZ

+2(f2
δ /e

2)DẽR
(22)

As predicted by the chirality of δ̃++, the non-photonic
contribution from the t–channel ẽR exchange affects only
the RR chirality charge.

To derive a transparent form for cross sections and po-
larization vectors, the following quartic charges are gener-
ally introduced,

Q1 =
1
4
[|QRR|2 + |QLL|2 + |QRL|2 + |QLR|2]

Q2 =
1
2
Re [QRRQ

∗
RL +QLLQ

∗
LR]

Q3 =
1
4
[|QRR|2 + |QLL|2 − |QRL|2 − |QLR|2] (23)

and

Q′
1 =

1
4
[|QRR|2 + |QRL|2 − |QLR|2 − |QLL|2]

Q′
2 =

1
2
Re [QRRQ

∗
RL −QLLQ

∗
LR]

Q′
3 =

1
4
[|QRR|2 + |QLR|2 − |QRL|2 − |QLL|2] (24)

which describe the independent experimental observables.
The final state probability may be expanded in terms

of the unpolarized cross section, the polarization vectors
of ∆̃++ and ∆̃−−, and the spin–spin correlation tensor.
The ∆̃++ production angle, with respect to the electron
flight–direction, will be denoted by Θ. Defining the ẑ axis
by the e− momentum, the x̂ axis in the production plane
with x̂ · p∆̃++ > 0, and ŷ = ẑ × x̂ in the rest frame of
the charginos, cross section and spin–density matrices are
defined as [24]:

dσ
d cosΘ

(λλ′; λ̄λ̄′) = (25)

=
dσ

d cosΘ
1
4

[
(I)λ′λ(I)λ̄λ̄′
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Fig. 2. Feynmam graphs for the production of ∆̃++∆̃−− pairs. The same set of diagrams describes δ̃++δ̃−− pair production
with ẽL → ẽR

e+ e- → ∆
∼ ++  ∆

∼ --

σ[
pb

]

√s
−
[GeV]

e+ e- → δ
∼ ++  δ

∼ --

σ[
pb

]

√s
−
[GeV]

a b

Fig. 3a,b. The polarized cross sections for the pair production of doubly charged higgsinos ∆̃±± and δ̃±± as functions of the
collision energy. The choice of the masses, the Yukawa couplings and the electron beam polarizations (L/R=-/+) are indicated
in the figures

+Pi(τ i)λ′λ(I)λ̄λ̄′ + P̄i(I)λ′λ(τ i)λ̄λ̄′

+Qij(τ i)λ′λ(τ j)λ̄λ̄′

]

where λ(λ′) and λ̄(λ̄′) = ±1 are twice the helicities of ∆̃++

and ∆̃−−, and Pi, P̄i are the components of the polariza-
tion vectors of ∆̃++ and ∆̃−−, respectively, with respect
to the reference frame introduced above. The tensor Qij

denotes the spin–spin correlation matrix of the ∆̃++ and
∆̃−− spins. The same decomposition can be formulated
for the δ̃++ and δ̃−− pair.

3.1 The production cross section

The cross sections of the processes (1) and (2) depend on
the parameters of the underlying theory: on the masses of
∆̃++, δ̃++, on their couplings to the Z boson, and also
the strength and chirality of the ∆̃++ and δ̃++ couplings
to electron–selectron pairs.

The unpolarized differential cross sections of the pro-
cesses (1), (2) are given by

dσ
d cosΘ

=
πα2

2s
β
{
(1 + β2 cos2Θ)Q1

+(1 − β2)Q2 + 2β cosΘQ3
}

(26)

If the beams are polarized, the same universal form holds
for the cross section. The quartic charges must be adjusted
however by restricting the sum to either QR∗ or QL∗ terms
for right– and left–handed electrons, respectively; more-
over, a factor 1/4 accounting for the spin average must be
replaced, e.g., by unity if the e± beams are both polarized.

Since the cross sections are proportional to β, it is
possible to carry out a very precise determination of the
∆̃++, δ̃++ masses at the production threshold [25] to an
accuracy of ∼100 MeV. The threshold cross sections for
the longitudinal electron beam polarizations are given by

σR(e+e− → ∆̃++∆̃−−)

=
4πα2

s
β

[
1 −

(
cos 2θW

cos2 θW

)
s

s−M2
Z

]2
σL(e+e− → ∆̃++∆̃−−)

=
4πα2

s
β

[
1 + 2 cot2 2θW

s

s−M2
Z

− f2
∆

e2
4s

s+ 4m2
l̃L

]2

σR(e+e− → δ̃++δ̃−−)
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e+ e- → ∆
∼ ++  ∆

∼ --
σ[

pb
]

f

e+ e- → δ
∼ ++  δ

∼ --

σ[
pb

]

f
a b

Fig. 4a,b. The cross sections for the processes e+e− → ∆̃++∆̃−− and e+e− → δ̃++δ̃−− for polarized beams as functions of
the couplings f∆ and fδ, respectively

=
4πα2

s
β

[
1 + 2 tan2 θW

s

s−M2
Z

− f2
δ

e2
4s

s+ 4m2
l̃R

]2

σL(e+e− → δ̃++δ̃−−)

=
4πα2

s
β

[
1 +

(
tan2 θW − 1

) s

s−M2
Z

]2
(27)

The angular distributions are isotropic at the thresholds.
The cross sections depend strongly on the beam polariza-
tion and on the nature of the doubly charged particle.

While the steep rise of the cross sections near the
thresholds can be exploited to determine the masses very
accurately, the charges and couplings of the particles can
be measured at energies sufficiently above the thresholds.
The relevant parameters are the isopin I3 and the coupling
f between electron, selectron and higgsino. The sensitiv-
ity to these parameters is demonstrated in Fig. 3 for a few
examples.

Since ∆̃−− does not couple to right–handedly polar-
ized electrons, t–channel selectron exchange does not con-
tribute to σR(∆̃), and the cross section can be used to
measure the isospin I3(∆̃++) = +1. The same holds for
σL(δ̃) which determines I3(δ̃++) = 0. The vector–charac-
ter of the ∆̃ and δ̃−Z interactions can be established ex-
perimentally by proving that the forward–backward asym-
metries of ∆̃++ and δ̃++ vanish for right– and left–hand-
edly polarized electron beams.

The mirror cross sections σL(∆̃) and σR(δ̃) can subse-
quently be used to determine the eẽ∆̃ and eẽδ̃ couplings
f∆ and fδ. The f dependence of σL(∆̃) and σR(δ̃) is shown
in Fig. 4. The effect of the t–channel selectron exchange
is very important for couplings of the same order as the
electromagnetic coupling, f ∼ e ∼ 1/3. For a large range
of the parameter values, the couplings f can be derived

from the measured cross section only up to a two–fold
ambiguity. For large f values, the solution is unique.

For asymptotic energies the contributions from s-chan-
nel γ, Z exchange and t–channel ẽL,R exchange are of the
same order:

σR(e+e− → ∆̃++∆̃−−) ⇒ 8πα2

3s
tan4 θW

σL(e+e− → ∆̃++∆̃−−) ⇒ 8πα2

3s

[
1
4
(
tan2 θW + cot2 θW

)2
−3

2
f2

∆

e2
(
tan2 θW + cot2 θW

)
+6

f4
∆

e4

]
(28)

and

σR(e+e− → δ̃++δ̃−−) ⇒ 8πα2

3s

[
(1 + 2 tan2 θW )2

−3
f2

δ

e2
(1 + 2 tan2 θW ) + 6

f4
δ

e4

]
σL(e+e− → δ̃++δ̃−−) ⇒ 8πα2

3s
tan4 θW (29)

Also the angular distributions, Fig. 5, are sensitive to
the f values. However, due to two neutralinos escaping the
detector, they cannot directly be used to resolve the ambi-
guity; the detailed discussion of the resolution is deferred
to Sect. 5.

3.2 The polarization of doubly charged higgsinos

The polarization vector P = (PT ,PN ,PL) is defined in
the rest frame of the particles ∆̃++ and δ̃++. PL denotes
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Fig. 5a,b. The normalized differential cross sections (unpolarized beams) for e+e− → ∆̃++∆̃−− and e+e− → δ̃++δ̃−− for
different values of the couplings f

e+ e- → ∆
∼ ++  ∆

∼ --
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∼ ++  ∆

∼ --

P T
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a b

Fig. 6a,b. The longitudinal and transverse polarization components of ∆̃++ produced with unpolarized beams for different
values of the coupling f

the component parallel to the flight direction in the c.m.
frame, PT the component in the production plane, and
PN the component normal to the production plane.

The normal component can only be generated by com-
plex production amplitudes. Without loss of generality the
couplings f can be chosen real. The non–zero width of the
Z boson and loop corrections generate non–trivial phases;
however, the width effect is negligible for high energies
and the effects due to radiative corrections are small. Ne-
glecting the small Z–width and the loop corrections, the
normal polarizations of ∆̃++, δ̃++ are vanishing.

In terms of the quartic charges the longitudinal and
transverse components of the ∆̃++ polarization vector can

be expressed as [12]

PL = 4
{
(1 + β2) cosΘQ′

1

+(1 − β2) cosΘQ′
2 + (1 + cos2Θ)βQ′

3
}
/N (30)

PT = −4
√

1 − β2 sinΘ {Q′
1 +Q′

2 + β cosΘQ′
3} /N

(31)

where

N = 4{(1 + β2 cos2Θ)Q1 + (1 − β2)Q2 + 2β cosΘQ3}
(32)
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Fig. 7a,b. The longitudinal and transverse polarization components of δ̃++ produced with unpolarized beams for different
values of the couplings f

Close to the production threshold, PL and PR are given
by the same combination of quartic charges:

PL → Q′
1 +Q′

2

Q1 +Q2
cosΘ and

PT → −Q′
1 +Q′

2

Q1 +Q2
sinΘ

(33)

The values of the longitudinal polarization component
PL and the transverse component PT of ∆̃++ and δ̃++,
are shown in Figs. 6 and 7, respectively. While the curves
denoted by a (f = 0) in Fig. 6 are characteristic for γ and
Z exchange in the production of chiral fermions, the po-
larization curves change substantially for non–zero f . The
∆̃++ and δ̃++ polarizations affect the decay distributions
so that polarization effects can serve as one of the tools
to resolve the two–fold ambiguity in the measurements of
the couplings f .

3.3 Production of doubly charged higgsinos
in γγ collisions

The double electric charges render γγ collisions an inter-
esting channel for the production of the higgsinos ∆̃++,
δ̃++:

γγ → ∆̃++∆̃−− and δ̃++δ̃−− (34)

The cross section increases by a factor 24 = 16 compared
to the γγ production of singly charged fermions of the
same mass. Moreover, for a given mass the theoretical
prediction of the cross section is parameter-free. Quasi-
monoenergetic γγ collisions can be generated by Compton
back-scattering of laser light [26] if the conversion points
and the collision point are slightly separated. The γγ cm

energy amounts to a fraction 0.8 of the initial e+e− cm
energy.

For Jz = 0 and Jz = 2 γγ states, the production cross
sections can be adapted from [27] by taking into account
the double electric charge of higgsinos:

σ(γ±γ± → ∆̃++∆̃−−)

=
32πα2

s

[
2β
(
1 + β2)+

(
1 − β4) ln

1 + β

1 − β

]
σ(γ±γ∓ → ∆̃++∆̃−−) (35)

=
32πα2

s

[
−2β

(
5 − β2)+

(
5 − β4) ln

1 + β

1 − β

]

adding up to the unpolarized cross section

σ(γγ → ∆̃++∆̃−−) (36)

=
32πα2

s

[
2β
(−2 + β2)+

(
3 − β4) ln

1 + β

1 − β

]

s is the photon–photon collision energy squared and β =√
1 − 4M2

∆̃++/s the velocity of the higgsinos. The angular
distribution of the higgsinos in the γγ c.m. frame is given
by

dσ

d cosΘ
(γγ → ∆̃++∆̃−−) (37)

=
16πα2

s

[−2 + s(s+ 4M2
∆̃++)D − 4M4

∆̃++s
2D2]

with D−1 = (t−M2
∆̃++)(u−M2

∆̃++) and t(u) −M2
∆̃++ =

s(1 ∓ β cosΘ)/2 being the momentum transfer. The form
of the cross section is the same for δ̃++ production.

Typical examples (see also [10]) are displayed in Fig. 8.
For asymptotic energies the Jz = 2 channel is dominant, as
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Fig. 8. The production cross sections of the higgsinos ∆̃++, δ̃++ in the Jz = 0 and 2 channels, as well as the unpolarized cross
section, in γγ collisions as a function of the invariant γγ collision energy for fixed higgsino mass M∆̃++ = 200 GeV

∆
∼ ++ → l+ l

∼ +

Γ[
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]
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Fig. 9. The two–body decay width of ∆̃++ and δ̃++ versus
mass

well-known. For moderate energies however the role is re-
versed and Jz = 0 is the leading channel. Near the thresh-
old, the cross sections rise steeply proportional to the ve-
locity β. As expected, with σmax ≈ 25 pb the cross sec-
tions are very large indeed, resulting in 2.5×106 events at
an integrated luminosity of 100 fb−1, i.e. about one fifth of
the e+e− collider luminosity. This event rate allows to per-
form detailed analyses of the higgsino ∆̃++, δ̃++ decays,
which in this way can solidly be based on a parameter-free
production mechanism.

4 Doubly charged higgsino decays

Since the doubly charged higgsinos are pure states and
do not mix with other supersymmetric particles, their de-
cays are given by interactions not affected by mixing. The
possible two–body decays of ∆̃++ are

∆̃++(p) → l̃+L (p1) l+(p2) (38)

and

∆̃++(p) → ∆̃+(p1)W+(p2) (39)

The first decay mode to a lepton–slepton pair is due to
the Yukawa interaction (15), the second decay mode to a
singly charged component of the triplet and the W boson
is due to the weak gauge interactions of the isotriplet.
Because δ̃++ is an isosinglet, the only possible two–body
decay mode is given by

δ̃++(p) → l̃+R(p1) l+(p2) (40)

Experimental constraints on the ρ parameter imply that
members of the same triplet should have masses close to
each other. Therefore the decay (39), with two heavy par-
ticles in the final state, is most likely not allowed kine-
matically. In the following we assume that the only al-
lowed two–body decay for ∆̃++ is the slepton–lepton de-
cay mode4. The two–body decay widths are given by

Γ =
f2

ĩ

8π

(M2
ĩ

−m2
l̃
)2

M3
ĩ

(41)

4 After finalizing this report, a phenomenological analysis
of the production and GMSB motivated τ decays of doubly
charged higgsinos at the Tevatron has been presented in [28].
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Fig. 10. Diagrams contributing to the three–body decay of ∆̃++. Analogous diagrams with the intermediate l̃R give rise to the
decay of δ̃++

for ĩ = ∆̃++ and δ̃++. As shown in Fig. 9, the widths are
small for couplings f of the size of the electromagnetic cou-
pling. Denoting the angle between the polarization vector
of the decaying higgsino by Θ, the angular distribution is
trivially given by

1
Γ

dΓ

d cosΘ
=

3
8
(1 ± cosΘ)2 (42)

for left– and right–chiral ∆̃++
L and δ̃++

R decays since the
scalar couplings flip the chiralities of the massless leptons.

The two–body decays (38) and (40) are kinematically
allowed provided M∆̃++ , Mδ̃++ >∼ ml̃. However, ∆̃++ and
δ̃++ can be very light, i.e., lighter than sleptons. In this
case, three-body decays of the doubly charged higgsinos
will occur. The possible decay channels are

∆̃++(p) → χ̃0(p1) l+(p2) l+(p3) (43)

∆̃++(p) → χ̃+(p1) l+(p2) ν(p3) (44)

∆̃++(p) → ∆̃+(p1) l+(p2) ν(p3) (45)

for ∆̃++, and

δ̃++(p) → χ̃0(p1) l+(p2) l+(p3) (46)

δ̃++(p) → χ̃+(p1) l+(p2) ν(p3) (47)

for δ̃++. The decays (43), (44) and the decays (46), (47)
are mediated by virtual left- and right-sleptons, respec-
tively, while the decay (45) is induced by the W boson
exchange. Assuming the neutralino χ̃0

1 to be the lightest
supersymmetric particle, the kinematically most favorable
decay modes are (43) and (46). In the following analysis
we assume that the three–body decays (43) and (46), cf.
Fig. 10, are the only modes which are allowed kinemati-
cally.

The matrix elements of the three-body decays (43,46)
consist of two terms corresponding to the two diagrams in
Fig. 10. These can be expressed as

DL,R =
4ef√

2

[
F 1

L,R

[
ū(l+1 )PL,R u(++)

] [
ū(χ̃0)PL,R v(l+2 )

]
+ F 2

L,R

[
ū(l+2 )PL,R u(++)

] [
ū(χ̃0)PL,R v(l+1 )

] ]
(48)

with the form factors

F 1
L =

cot 2θWN∗
12 +N∗

11

s1 −m2
l̃L

+ iml̃L
Γl̃L

,

F 2
L =

cot 2θWN∗
12 +N∗

11

s3 −m2
l̃L

+ iml̃L
Γl̃L

F 1
R =

tan θWN12 −N11

s1 −m2
l̃R

+ iml̃R
Γl̃R

,

F 2
R =

tan θWN12 −N11

s3 −m2
l̃R

+ iml̃R
Γl̃R

(49)

The terms denoted with L and R correspond to the decays
of ∆̃++ and δ̃++, respectively, and N11, N12 are the ele-
ments of the unitary matrix diagonalizing the neutralino
mass matrix in the basis γ̃, Z̃, H̃0

a , H̃
0
b [19]. The Mandel-

stam variables s1, s2, s3 in the form factors are defined
in terms of the 4–momenta of the final state particles as
s1 = (p1 + p2)2, s2 = (p2 + p3)2 and s3 = (p1 + p3)2 . The
decay widths and distributions of ∆̃++, δ̃++ with polariza-
tion vector P can be found from the following expression

dΓ (n)
dPS

=
4παf
M

{
− (s1 −M2)(s1 −m2

χ̃0)|F 1
L,R|2

−(s3 −M2)(s3 −m2
χ̃0)|F 2

L,R|2
+2(s1s3 −M2m2

χ̃0)Re(F 1
L,RF

2∗
L,R)

+ηL,R2(n · p2)M [(s1 −M2)Re(F 1
L,RF

2∗
L,R)

−(s3 −m2
χ̃0)|F 2

L,R|2]
+ηL,R2(n · p3)M [(s3 −M2)Re(F 1

L,RF
2∗
L,R)

−(s1 −m2
χ̃0)|F 1

L,R|2]
}

(50)

where nµ is the ∆̃++(δ̃++) spin 4–vector and dPS the
phase–space element,

dPS =
1

(2π)5
1

32M2 ds1ds2dΩ
∗
1dφ

∗
ll (51)

Ω∗
1 = (θ∗, φ∗) describes orientation of the neutralino in

the rest frame of the doubly charged higgsino and φ∗
ll mea-

sures the rotation of the recoiling dilepton system about
this axis. Again, L and R correspond to the decay of
∆̃++ and δ̃++, respectively, and ηL = 1, ηR = −1. In
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Fig. 11a,b. The three-body decay width of ∆̃++ and the normalized angular distributions of the final state χ̃0 in the rest
frame of the polarized ∆̃++. Numerical values for the parameters are indicated in the figures

Fig. 11 the three–body decay width for ∆̃++ is shown
as a function of the mass. In the numerical example, the
neutralino mixing components are chosen as N11 = 0.94
and N12 = −0.32, corresponding to the MSSM parame-
ters tanβ = 2, M2 = 78 GeV and µ = −250 GeV. For
these parameters the mass of the lightest neutralino is
mχ̃0

1
= 42 GeV [29]. Because the amplitude (48) depends

linearly on the combination of Nij , cf. (49), the dynamics
of the three–body decays (43), (46) does not depend on
the choice of these parameters: the distributions are the
same for different parameter sets. The neutralino mixing
parameters are assumed to be known from other collider
experiments.

If the angular distribution in the l+l+ rest system is
integrated out, the ∆̃++ and δ̃++ three–body decay final
states are described by the energy and the polar angle of
χ̃0

1, or equivalently by the energy and the polar angle of
the l+l+ pair, which can be measured directly. In Fig. 11
the normalized angular distribution of the final state χ̃0

in polarized ∆̃++ decays are illustrated in the rest frame
of ∆̃++. The distributions depend on the masses of the
particles and they are opposite for different polarization
states. For the same set of masses the distributions in the
polarized decays of δ̃++ are identical to ∆̃++ yet with the
opposite sign.

For the subsequent analysis of the angular correlations
between the two doubly charged higgsinos in the processes
(1), (2), it is convenient to determine the normalized spin–
density matrix elements ρλλ′ ∼ DλD∗

λ′ for the kinematical
configuration described above. Choosing the ∆̃++ flight
direction as quantization axis, the spin–density matrices
are given by the expressions

ρλλ′ =
1
2

(
1 + κ cos θ∗ κ sin θ∗eiφ∗

κ sin θ∗e−iφ∗
1 − κ cos θ∗

)

ρ̄λ̄λ̄′ =
1
2

(
1 + κ̄ cos θ̄∗ κ̄ sin θ̄∗eiφ̄∗

κ̄ sin θ̄∗e−iφ̄∗
1 − κ̄ cos θ̄∗

)
(52)

θ∗ (θ̄∗) is the polar angle of the l+l+ (l−l−) system in
the ∆̃++ (∆̃−−) rest frame with respect to the original
flight direction in the laboratory frame, and φ∗ (φ̄∗) is the
corresponding azimuthal angle with respect to the produc-
tion plane. The spin analysis–power κ, which measures the
left–right asymmetry, depends on the particle masses and
couplings involved in the decay, and on the Mandelstam
variable s2 which is a square of the invariant mass of the
final–state l+l+ system. Neglecting small effects from non–
zero widths, loops and CP–noninvariant phases, κ (and κ̄)
is real. The paramater κ in the decays (43) and (46) is
shown in Fig. 12 as a function of the invariant mass

√
s2

of the final state l+l+ system. κ is in general large over
the whole range of the invariant mass and approaches zero
only at the kinematical limit. If the virtual sleptons me-
diating the decay are very heavy (curve b in Fig. 12), the
slepton propagators can be approximated by point prop-
agators. In this case, the analytic expression for κ in the
∆̃++ decay is particularly simple,

κ(s2) =
λ
[
2(M2

∆̃++ −m2
χ̃0) − s2

]
λ2 + 3s2(M2

∆̃++ +m2
χ̃0) − 3(M2

∆̃++ −m2
χ̃0)2

(53)

where λ = [M2
∆̃++ − (

√
s2 − mχ̃0)2]1/2[M2

∆̃++ − (
√
s2 +

mχ̃0)2]1/2. For the decay (46) of δ̃++ the parameter κ has
the opposite sign but the absolute value is numerically
equal to the ∆̃++ decay.
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Fig. 12a,b. Values of the paramater κ in the decays (43) and (46) as functions of the invariant mass of the final state l+l+

system for the masses indicated in the figure

4.1 Angular correlations

The two–fold ambiguity in extracting the ∆̃++ and δ̃++

couplings from the total cross sections can be resolved
by measurements of angular correlations which reflect the
polarization states of the higgsinos in the production pro-
cesses:

The analyses are complicated since the two invisible neu-
tralinos in the final state do not allow for a complete re-
construction of the events. In particular, it is not possible
to measure the ∆̃++, δ̃++ production angle Θ; this an-
gle can be determined only up to a two–fold ambiguity
which, however, becomes increasingly less effective with
rising energy.

The final state distributions can be found by com-
bining the polarized cross section with the polarized de-
cay distributions. After integrating over the unobservable
production angle Θ and the (l+l+) and (l−l−) invariant
masses, the integrated cross section

d4σ
[
e+e− → ∆̃++∆̃−− → χ̃0

1χ̃
0
1(l

+l+)(l−l−)
]

d cos θ∗dφ∗d cos θ̄∗dφ̄∗

=
α2β

128πs
Br(∆̃++ → χ̃0

1l
+l+)Br(∆̃−− → χ̃0

1l
−l−)

×Σ(θ∗, φ∗; θ̄∗, φ̄∗) (54)

can be decomposed into sixteen independent angular parts.
In addition to the unpolarized cross section, four angu-
lar distributions can be determined experimentally even

though two neutralinos escape undetected:

Σ = Σunpol + cos θ∗κP + cos θ̄∗κ̄P̄
+ cos θ∗ cos θ̄∗κκ̄Q
+ sin θ∗ sin θ̄∗ cos(φ∗ + φ̄∗)κκ̄Y + ..... (55)

The ellipsis denotes the remaining orthogonal angular dis-
tributions which cannot be measured. The polarizations P
and P̄ = −P have been expressed in terms of the general-
ized charges in (30). Analogously, the correlation functions
Q and Y are defined by the charges in the following way:

Q = −4
∫

d cosΘ
[
(β2 + cos2Θ)Q1

+(1 − β2) cos2ΘQ2 + 2β cosΘQ3
]

Y = −2
∫

d cosΘ(1 − β2) [Q1 +Q2] sin2Θ (56)

The energy dependence of the three correlation functions,
P, Q and Y, normalized to Σunpol is shown in Fig. 13.
For both the processes e+e− → ∆̃++∆̃−− and e+e− →
δ̃++δ̃−− they are smooth functions of the c.m. energy,
quite different from zero for all values of the energy.

5 Observables
of the doubly charged higgsinos

5.1 Signals and background

The final states of the doubly charged higgsino pair pro-
duction processes (1), (2) and their subsequent decays
(38), (40) or (43), (46) consist of four charged leptons
l+1 l

+
1 l

−
2 l

−
2 plus missing energy 6E. Because ∆̃++, δ̃++ carry

two units of lepton number and two units of electric charge,
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Fig. 13a,b. Correlation functions P, Q and Y normalized to Σunpol as functions of the collision energy for the processes
e+e− → ∆̃++∆̃−− and e+e− → δ̃++δ̃−−

the final state leptons with the same charge and flavor are
associated with the same decaying particle:

e+e− → ∆̃++∆̃−−, δ̃++δ̃−−

→ (l+l+)(l−l−)+6E (57)

The final–state observables of the signals are therefore
clearly distinct from the background processes in which
same–sign dileptons originate necessarily from decays of
different particles.

Indeed, the main SM background is due to triple gauge–
boson production: e+e− → γ∗W+W− → l+l−l+l−+ 6E
etc. These processes are of higher order in the gauge cou-
plings so that the cross sections are small and the back-
grounds are under control. SUSY–induced backgrounds
are generated by the production of heavy neutralinos that
can decay into χ̃0

1 and a charged lepton pair: e+e− →
χ̃0

i χ̃
0
j → l+l−l+l−+6E. Since, in both cases, the kinemati-

cal configurations of the background and signal events are
very different from each other, the large number of events
can be used to enrich the sample of signal events statisti-
cally by applying suitable cuts to disentangle signal from
background effects.

Mass. The massesM∆̃++ andMδ̃++ can be measured very
precisely near the thresholds where the production cross
sections σ(e+e− → ∆̃++∆̃−−/δ̃++δ̃−−) rise sharply with
the velocities β =

√
1 − 4M2

∆̃++/s and
√

1 − 4M2
δ̃++/s,

respectively. With beam parameters as anticipated for
TESLA, a precision better than ∼ 100 MeV can be achieved
by this method for an integrated luminosity of 50 fb−1 [25].

Isospin. As evident from (14), the isospin of the two
states ∆̃++ and δ̃++ can be measured by using right– and
left–handedly polarized electron beams. The two cross sec-

tions depend quadratically on the isospin,

σ(e+e− → ∆̃++∆̃−−) =
4πα2

s
β [ 1 + c(s)I3 ]2 (58)

yet the root ambiguity can easily be resolved by carrying
out the measurements at two different beam energies. The
vector–character of the states can be proven by establish-
ing the vanishing of the forward–backward asymmetries.

Trilinear couplings f . Once the isospin components are
determined, the couplings f∆̃ and fδ̃ can be probed by
measuring the cross sections in the mirror processes for
right– and left–handedly polarized electron beams, respec-
tively, cf. (22,22). The selectron masses are assumed to be
known from the pair production of these particles. The
measurements of the cross sections lead, in general, to a
two–fold ambiguity in f . This ambiguity can be resolved
in two ways. (i) If large enough variations in the cm en-
ergy are possible, measurements at two different energy
points give rise to two independent equations for f with
only one common solution for both. (ii) The ambiguity
can also be resolved by analyzing spin correlations. Since
two invisible neutralinos are present in the final states af-
ter the decays of ∆̃ and δ̃, the kinematics of the ∆̃ and δ̃
states cannot be reconstructed completely. Nevertheless,
the polar angles ϑ∗ and the product of the transverse mo-
mentum vectors of the two χ̃0

1’s can be expressed in terms
of measured energies and laboratory angles,

cos θ∗ =
1

β|p∗|
(
E

γ
− E∗

)
and

cos θ̄∗ =
1

β|p̄∗|
(
Ē

γ
− Ē∗

)
sin θ∗ sin θ̄∗ cos(φ∗ + φ̄∗)
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Fig. 14a,b. Contour lines from the measurements of σ, P2/Q and Y/Q determining the couplings f and the weak isospin I3

of the doubly charged higgsinos ∆̃++ and δ̃++. The common crossing point is indicated by the dot
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Fig. 15a,b. Contour lines from the measurements of σ, P2/Q and Y/Q in the processes e+e− → ∆̃++∆̃−− and e+e− → δ̃++δ̃−−.
The common crossing point is indicated by the dot

=
|p||p̄| cosϑ+ (E − E∗/γ)

(
Ē − Ē∗/γ

)
β2|p∗||p̄∗| (59)

where γ =
√
s/2M∆̃++ etc.; ϑ is the angle between the

momenta of the two lepton systems with opposite charges.
As evident from (55), the degree of polarizations P and
P̄, and the spin correlations Q and Y can be measured
directly despite the two neutralinos escaping detection.

The correlation functions come with the spin analysis–
powers κ and κ̄ which depend on masses and couplings in-
volving the neutralinos χ̃0

1. The κ, κ̄ dependence however
factorizes out of the correlation functions so that these
parameters can be eliminated by taking appropriate ra-
tios. As a result, two independent observables can be con-

structed from angular correlations, which can be measured
directly in terms of laboratory momenta: P2/Q and Y/Q.

To demonstrate that the ambiguity can be resolved
by measuring the spin correlations, we assume, in a Ge-
danken–Experiment, a set of “measured observables”, i.e.
unpolarized cross sections and correlation ratios; for illus-
tration:

∆̃++ : σ = 0.139 pb P2/Q = -2.81
Y/Q = 0.27

δ̃++ : σ = 0.093 pb P2/Q = -2.12
Y/Q = 0.23
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The contour lines of these observables5 are shown in Fig. 14
in the planes [I3, f ], assuming the collision energy to be√
s = 500 GeV and higgsino and selectron masses 200

GeV and 250 GeV, respectively. While the contours of
σ,P2/Q,Y/Q pairwise give rise to several intersections,
the curves cross each other, all at the same time, only
once. Moreover, this crossing point is the only solution
that is consistent with integer/half–integer values of I3,
i.e. I3(∆̃++) = +1 and I3(δ̃++) = 0. Thus a unique
solution for quantum numbers and couplings can be ex-
tracted from the measurements of (un)polarized cross sec-
tions, forward–backward asymmetries, and spin–spin cor-
relations.

In the case of sufficiently light doubly charged higgsi-
nos and relatively heavy selectrons, the cross sections and
spin correlations can be exploited to determine the se-
lectron masses. If the selectrons are too heavy to be pair
produced, their masses can be estimated from their virtual
contributions to the higgsino production processes. This
is demonstrated for the “measured values” given above
by the [f,Mẽ] contours in Fig. 15. In these examples, the
isospin quantum numbers are assumed to be pre–fixed in
polarized–beam measurements.
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Choi, U. Sarkar, G. Senjanović, M. Spira and F. Vissani for
helpful discussions and K. Huitu for useful comments. M.R.
thanks the Humboldt Foundation for a grant and Prof. A. Wag-
ner for the warm hospitality extended to him at DESY.

References

1. For recent reviews see, e.g., M. Takita, J. Conrad, M.
Spiro, E. Kolb and R. Peccei, Proceedings ICHEP98, Van-
couver 1998.

2. J.C. Pati and A. Salam, Phys. Rev. D10 (1974) 275: R.N.
Mohapatra and J.C. Pati, Phys. Rev. D11 (1975) 566,
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